
1ACTS Collection Workshop, LBNL, Sept 4-7, 2002

OPT++

A Toolkit for Nonlinear Optimization

Juan Meza
High Performance Computing Research
Lawrence Berkeley National Laboratory

http://www.nersc.gov/~meza

2ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Acknowledgements

� OPT++ is an open source toolkit for general
nonlinear optimization problems

� Original development started in 1992 at SNL/CA
� Major contributors

� Juan Meza, LBNL
� Patty Hough, SNL/CA
� Pam Williams, SNL/CA

� Other members of the OPT++ team
� Vicki Howle
� Kevin Long
� Suzanne Shontz

3ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Outline

� Introduction to Optimization
� OPT++ Philosophy
� Classes of Optimization Solvers
� Setting up a Problem and Algorithm
� Example 1: Unconstrained Optimization
� Example 2: Constrained Optimization
� Parallel optimization techniques
� Summary

4ACTS Collection Workshop, LBNL, Sept 4-7, 2002

General Optimization Problem

0)(
,0)(..

≥
=

xg
xhts

Inequality constraints

Equality constraints

Objective function),(min xf
nx ℜ∈

)()()(xgwxhyxfL TT −+=

5ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Classes of Optimization Problems

� Unconstrained optimization
� Bound constrained optimization

� Only upper and lower bounds
� Sometimes called “box” constraints

� General nonlinearly constrained optimization
� Equality and inequality constraints
� Usually nonlinear

� Some special case classes
� Linear programming (function and constraints linear)
� Quadratic programming (quadratic function, linear

constraints)

6ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Parameter identification example

� Find model parameters,
satisfying some bounds, for
which the simulation
matches the observed
temperature profiles

� Computing objective
function requires running
thermal analysis code

ux

TxT
N

i
iix

 0 t.s.

))((min
1

2*

≤≤

−∑
=

7ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Optimization formulation

� Objective function
consists of computing
the max temperature
difference over 5 curves

� Each simulation requires
approximately 7 hours
on 1 processor

� Uncertainty in both the
measurements and the
model parameters

20

40

60

80

100

120

0 5 10 15 20

TC1
TC2
TC3
TC4
TC5
TC6
TC1mod
TC2mod
TC3mod
TC4mod
TC5mod
TC6mod

T
em

pe
ra

tu
re

 (C
)

Time (min)

8ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Some working assumptions

�Objective function is smooth
� Usually true, but simulations can create noisy

behavior
�Twice continuously differentiable

� Usually true, but difficult to prove
�Constraints are linearly independent

� Users can sometimes overspecify or incorrectly
guess constraints

�Small dimensional, but expensive objective
functions

9ACTS Collection Workshop, LBNL, Sept 4-7, 2002

OPT++ Philosophy

� Problem should be defined in terms the user
understands
� Do I have second derivatives available? vs. Is my objective

function twice continuously differentiable?
� Solution methods should be easily interchangeable

� Once the problem is setup, methods should be easy to
interchange so that the user can compare algorithms

� Common components of methods should be
interchangeable
� Algorithm developers should be able to re-use common

components from other algorithms

10ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Problem Classes in OPT++

� Four major classes of problems available
� NLF0(ndim, fcn, init_fcn, constraint)

• Basic nonlinear function, no derivative information available
� NLF1(ndim, fcn, init_fcn, constraint)

• Nonlinear function, first derivative information available
� FDNLF1(ndim, fcn, init_fcn, constraint)

• Nonlinear function, first derivative information approximated
� NLF2(ndim, fcn, init_fcn, constraint)

• Nonlinear function, first and second derivative information
available

11ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Classes of Solvers in OPT++

� Pattern search
� No derivative information required

� Conjugate Gradient
� Derivative information may be available but doesn’t use

quadratic information
� Newton-type methods

� Algorithm attempts to use/approximate quadratic information
� Newton
� Finite-Difference Newton
� Quasi-Newton
� NIPS

12ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Quick tour of some of the algorithms

13ACTS Collection Workshop, LBNL, Sept 4-7, 2002

� Can handle noisy
functions

� Do not require
derivative information

� Inherently parallel
� Convergence can be

painfully slow

Pattern search

14ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Newton-type Methods

� Fast convergence
properties

� Good global
convergence
properties

� Inherently serial
� Difficulties with

noisy functions

xN

xc

xCP

15ACTS Collection Workshop, LBNL, Sept 4-7, 2002

NIPS: Nonlinear Interior Point Solver

� Interior point method
� Based on Newton’s method for a particular system of

equations (perturbed KKT equations, slack variable
form)

� Can handle general nonlinear constraints
� Can handle strict feasibility

0
)(

)(

)()()(

)(=























−
−

−
∇−∇+∇

=

eZSe
sxg

xh
zw

wxgyxhxf

F

µ

µ

16ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Constraints

� Constraint types
� BoundConstraint(numconstraints, lower, upper)
� LinearInequality(A, rhs, stdFlag)
� NonLinearInequality(nlprob, rhs, numconstraints, stdFlag)
� LinearEquation(A, rhs)
� NonLinearEquation(nlprob, rhs, numconstraints)

� The whole shebang
� CompoundConstraint(constraints)

17ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Algorithm Choices Depend on Problem

x
x

x
x
x
x

FDNLF1

xxOptFDNewton

xOptNIPS
xOptBCNewton
xOptNewton
xxOptFDNIPS

xxOptBCQNewton
xxOptQNewton
xxOptCG
xxxOptPDS

NLF2NLF1NLF0

18ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Bare bones example: unconstrained
optimization

void init_rosen(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {

int ndim = 2;

FDNLF1 nlp(ndim, rosen, init_rosen);

nlp.initFcn();

OptQNewton objfcn(&nlp);

objfcn.setSearchStrategy(TrustRegion);

objfcn.setMaxFeval(200);

objfcn.setFcnTol(1.e-4);

objfcn.optimize();

}

19ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Example 2: Constrained optimization

0.50.5
,5.45.4
,5.45.4

,48
..

)5()10)(9/1()(min

3

2

1

2
3

2
2

2
1

2
3

2
21

2
21

≤≤−
≤≤−
≤≤−

≤++

−+−++−

x
x
x
xxx

ts
xxxxx

20ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Constrained optimization (cont.)

int ndim = 3;
ColumnVector lower(ndim), upper(ndim);
lower << -4.5 << -4.5 << -5.0; upper << 4.5 << 4.5 << 5.0 ;
Constraint c1 = new BoundConstraint(ndim, lower, upper);
// Nonlinear inequality constraint
NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, hs65,

init_hs65));
Constraint nleqn = new NonLinearInequality(chs65);
// Put everything together in one constraint object
CompoundConstraint* constraints = new

compoundConstraint(nleqn, c1);

21ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Constrained optimization (cont.)

// Put it all together

NLF2 nips(ndim, hs65, init_hs65, constraints);

nips.initFcn();

// Define the optimization object

OptNIPS objfcn(&nips);

// Set tolerances and parameters

objfcn.setFcnTol(1.0e-06);

objfcn.setMaxIter(150);

objfcn.setMeritFcn(ArgaezTapia);

objfcn.optimize();

22ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Parallel Optimization

23ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Schnabel (1995) Identified Three Levels for
Introducing Parallelism Into Optimization

�Parallelize evaluation of
function/gradient/constraints
� May or may not be easy to implement

�Parallelize linear algebra
� Really only useful if the optimization

problem is large-scale
�Parallelize optimization algorithm at a

high level
� Multiple function evaluations in parallel

24ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Trust Region with PDS

xN

xc

xCP

� Fast convergence
properties of Newton
method

� Good global
convergence properties
of trust region approach

� Inherent parallelism of
PDS

� Ability to handle noisy
functions

25ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Comparison of TRPDS with other
approaches

0

1000

2000

3000

4000

5000

6000

1.E-12 1.E-10 1.E-08 1.E-06 1.E-04 1.E-02

PDE Relative Convergence Tolerance

W
al

l C
lo

ck
 T

im
e(

s)

BFGS
SPEC
TRPDS

26ACTS Collection Workshop, LBNL, Sept 4-7, 2002

Summary

� OPT++ can handle many types of nonlinear
optimization problems

� The toolkit can be used to compare the effectiveness
of several algorithms on the same problem easily

� The user needs to provide only functions for the
objective function and the constraints
� If additional information is available it can be easily

incorporated
� The code is open source and available at either

� http://www.nersc.gov/~meza/projects/opt++
� http://csmr.ca.sandia.gov/opt++

27ACTS Collection Workshop, LBNL, Sept 4-7, 2002

References

� Other links
� http://sal.kachinatech.com/B/3/index.shtml
� http://www-neos.mcs.anl.gov/neos
� http://www.mcs.anl.gov/tao
� http://endo.sandia.gov/DAKOTA/index.html

� Books/Papers
� Dennis and Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, 1983
� Gill, Murray, Wright, Practical Optimization, Academic Press, 1981
� El-Bakry, Tapia, Tsuchiya, Zhang, On the Formulation and Theory

of the Newton Interior-Point Method for Nonlinear Programming,
JOTA, Vol. 89, No.3, pp.507-541, 1996

� More´ and Wright, Optimization Software Guide, SIAM, 1993

